Classification of EMG Signal Based on Human Percentile using SOM

نویسنده

  • M. H. Jali
چکیده

Electromyography (EMG) is a bio signal that is formed by physiological variations in the state of muscle fibre membranes. Pattern recognition is one of the fields in the bio-signal processing which classified the signal into certain desired categories with subject to their area of application. This study described the classification of the EMG signal based on human body percentile using Self Organizing Mapping (SOM) technique. Different human percentile definitively varies the arm circumference size. Variation of arm circumference is due to fatty tissue that lay between active muscle and skin. Generally the fatty tissue would decrease the overall amplitude of the EMG signal. Data collection is conducted randomly with fifteen subjects that have numerous percentiles using noninvasive technique at Biceps Brachii muscle. The signals are then going through filtering process to prepare them for the next stage. Then, five well known time domain feature extraction methods are applied to the signal before the classification process. Self Organizing Map (SOM) technique is used as a classifier to discriminate between the human percentiles. Result shows that SOM is capable in clustering the EMG signal to the desired human percentile categories by optimizing the neurons of the technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition

Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...

متن کامل

An Android Application for Estimating Muscle Onset Latency using Surface EMG Signal

Background: Electromyography (EMG) signal processing and Muscle Onset Latency (MOL) are widely used in rehabilitation sciences and nerve conduction studies. The majority of existing software packages provided for estimating MOL via analyzing EMG signal are computerized, desktop based and not portable; therefore, experiments and signal analyzes using them should be completed locally. Moreover, a...

متن کامل

EMG-based Fatigue Assessment During Endurance Testing With Different VT Protocols

BACKGROUND: Muscle fatigue can be defined as the failure of a muscle to maintain a reasonably expected force output. The multivariate approach to fatigue assessment is used because the multiple (EMG) feature provides more information than anyone. OBJECTIVE: This study presents a method of assessing muscle fatigue during endurance testing at 50% maximal voluntary contraction (MVC) using electro...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Quantification of Parkinson Tremor Intensity Based On EMG Signal Analysis Using Fast Orthogonal Search Algorithm

The tremor injury is one of the common symptoms of Parkinson's disease. The patients suffering from Parkinson's disease have difficulty in controlling their movements owing to tremor. The intensity of the disease can be determined through specifying the range of intensity values of involuntary tremor in Parkinson patients. The level of disease in patients is determined through an empirical rang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014